• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

SEO Website Project

  • Home
  • SEO
  • SEO Website
  • WordPress SEO
  • Joomla SEO

How Search Engines Use Machine Learning: 9 Things We Know For Sure

One of the most exciting and popular technology trends today is machine learning. In the context of search engine optimization, this can also be called enhanced learning. This process involves the use of supervised artificial intelligence (self-learning algorithms) to take complete control of how the search results page is displayed, ranked, and selected for users. As such, it provides the best results for all search engines – no matter how many times you type in a search term. In fact, if you are an avid internet browser, chances are you already know more about this exciting new development than the average internet user.

So what exactly is machine learning? It is a subset of artificial intelligence, meaning computer software that can learn and learn on its own. Like all AI systems, it works on a database from past examples or behaviors. Finally, the system can successfully predict future human behavior by collecting enough data from real-life searches. In this way, the system improves its ability to rank successfully in search engine results.

The primary goal of these systems is to help the user find what he needs with little effort. This is especially important when ranking search engines, which are based primarily on the volume and rank of the search engine, and not on relevance. This is why people prefer to search using these types of services – they are confident that the results will provide them with accurate information.

Many experts believe that machines need much more time to learn from their experiences than humans. Others believe that people need much more time to properly understand and adapt to the way search results are classified and ranked. With the new search engine ranking method, results are displayed to search engines much faster than before.

The main purpose of the new ranking system is to give search engines more relevant search results. As new search results are displayed, the user is shown the first 10 search results, along with the individual web pages that are ranked for each of them. The pages displayed in these results are determined by certain algorithms. These algorithms were devised by a team of researchers, who were paid for each page returned. This ensures that the page that is most relevant is always displayed to the browser.

It is important to understand how machine learning works if you want to know how search engines use machine learning to rank websites. You need to understand how researchers choose which keywords to use on each individual website. Without knowing how to do this, you will not be able to fully understand how machine learning helps webmasters improve the ranking of their websites.

Machine learning works by showing a robot a picture of a website. Based on the size of the image and the appearance of the text in the image, the robot can determine which keywords to search for. Once it finds a match, it searches the internet for more information. After gathering enough information, the program analyzes it and produces a list of relevant pages. These relevant pages are displayed to the user, and the robot sends ranking results for each site.

This is not the only technology that search engines use to rank websites. They also use natural algorithms and statistical analysis. Machine learning is just one form of optimization used by search engines. Other methods include the use of tags, keywords, and meta tags. In order for your website to rank well with these other methods, you need to master SEO techniques. There are many books and online courses that teach you how to use SEO effectively to get better search engine rankings.

Technical giants are investing heavily in machine learning.

In 2019, Microsoft invested in 11 artificial intelligence (AI) startups, with $ 1 billion for OpenAI alone. They’re not even the biggest source of corporate venture capital flooding AI startups.

In the same year, Intel Capital invested 19 and Google Ventures 16 investments.

This huge inflow of capital means that the computing power of AI is advancing rapidly in a number of sectors, from healthcare to construction to marketing and search engine optimization.

However, before we get into the implications of machine learning for SEO professionals, let’s define what we mean by artificial intelligence.

While companies like OpenAI and Conversion.ai are moving towards developing general artificial intelligence for natural language processing, there are currently no clear examples of AGI.

For progress from ANI to AGI, deep learning will be key to creating stronger artificial intelligence capable of using deductive reasoning to analyze complex, unstructured data and make independent decisions.

Back in 2016, Google announced its intention to become the company’s “first machine learning”. Since then, they have taken constant steps towards that goal, launching Google AI in 2017, and BERT 2019.

What is their goal in comprehensive machine learning?

Well, according to Google, they want to not only make our lives easier, but also use AI to find “new ways to look at existing problems, from healthcare reviews to advanced scientific discoveries.”

In addition to those lofty goals for the future, humanity is already seeing these shifts in machine learning to a lesser extent in something we communicate with on a daily basis – search engine algorithms.

Google has made steady progress in connecting users to the content they search for, including these nine ways we know search engines currently use machine learning.

Contents

  • 1 1. Pattern Detection
  • 2 2. Identification of New Signals
  • 3 3. It’s Weighted as a Small Portion
  • 4 4. Custom Signals Based on Specific Query
  • 5 5. Natural Language Processing
  • 6 6. Image Search to Understand Photos
  • 7 7. Ad Quality & Targeting Improvements
  • 8 8. Synonyms Identification
  • 9 9. Query Clarification
  • 10 Summary

1. Pattern Detection

1. Pattern Detection

Search engines use machine learning to detect patterns that help identify unwanted or duplicate content.

Low quality content usually has different similarities, such as:

Machine learning recognizes these patterns and marks them. It also uses data from user interactions to detect when new spam structures and techniques are being used, identify new patterns, and successfully tag them.

Although Google continues to use human quality assessors, using machine learning to detect these patterns drastically reduces the amount of manpower required to review content.

This way, Google can automatically browse the site to remove low-quality content before the real person gets involved.

Machine learning is a technology that is constantly evolving, so the more pages are analyzed, the more accurate it is (at least in theory).

2. Identification of New Signals

2. Identification of New Signals

RankBrain is a machine learning algorithm developed by Google that not only helps identify patterns in queries, but also helps a search engine identify possible new ranking signals.

Prior to RankBrain, Google’s algorithm was completely encrypted manually. It depended on a team of engineers to analyze the results of the search queries, run tests to improve the quality of those results, and implement the changes.

Now, while more human engineers are working on the algorithm, RankBrain is quietly running in the background running tests and assessing how changes affect user interactions.

RankBrain solves some of the tricky problems Google has faced with traditional algorithms – including how to handle search terms that have never been entered into Google before.

According to Google’s Gary Illyes at Reddit AMA 2019:

“RankBrain is a PR-sexy machine learning ranking component that uses historical search data to predict what a user [sic] would most likely click on for a previously unseen query.”

Because search engines can learn technology how to independently manage predictions and data, there may be less manual labor and employees may move toward other things machines can’t do, such as innovation or human-centered projects.

3. It’s Weighted as a Small Portion

3. It’s Weighted as a Small Portion

However, while machine learning is slowly changing the way search engines find and rank websites, that doesn’t mean it has a big, significant impact (currently) on our SERP.

In a discussion of working hours for central offices for webmasters in 2019, Google’s John Mueller mentions how machine learning helps Google’s engineers better understand a variety of issues, but notes the following:

“… machine learning is not just this one black box that does everything for you where on the one hand you feed the internet and on the other hand search results come out.”

Recently, in a discussion on working hours in May 2021, he explained that machine learning can adjust the weight of different ranking signals. But again, there are still real people who manually check and adjust those values.

Google’s ultimate goal is to use technology to provide users with a better experience. They don’t want to automate the whole process if it means the user won’t have the experience they are looking for.

So don’t assume that machine learning will soon take over the entire search ranking; it’s simply a small part of the puzzles that search engines have implemented to hopefully make our lives easier.

4. Custom Signals Based on Specific Query

4. Custom Signals Based on Specific Query

Google’s current privacy policy discusses how a search engine currently generates customized search results based on user behavior.

Google’s personalized search patent, US20050102282A1, states the following:

“… personalized search generates different search results for different search engine users based on their interests and past behaviors.”

We can see this clearly in action. Often used in conference presentations, proving this process is as simple as typing a series of queries into Google in a single session and watching the results change depending on what you last searched for.

For example, if I search [New York Football stadium] in an anonymous browser, I get the answer [MetLife Stadium].

Then, if I only search [jets] in the same search engine, Google assumes that, since my last query related to a football stadium, then this query also applies to football.

As I continue my search, Google finds out when my interest begins to change.

Searching for [Jaguars] in the same search engine will display information about the Jacksonville Jaguars NFL team (which is related to my last two searches).

But the moment I start searching [the zoo near San Diego] and type [zoo] into the query box, Google suggests [zoos with jaguars] even though I haven’t searched the jaguars a second time.

Search history is just one component of the search experience that machine learning uses to deliver better results.

5. Natural Language Processing

5. Natural Language Processing

It is important that the search engine can recognize how similar one part of the text is to another. This applies not only to the words used, but also to their deeper meaning.

The two-way encoder representations from Transformers – abbreviated BERT – are a natural learning processing framework that Google uses to better understand the context of a user’s search query.

People don’t always speak the way a machine would expect. We play with language to come up with new words.

We use the same word to describe different things. Sometimes we are even intentionally ambiguous.

However, as more people use and search for new phrases online, machine learning can display more accurate information for those queries.

Google Trends is a great example of this. A new phrase or word that gets in effect (for example, “shine” or “spill tea”) may initially have meaningless search results.

BERT is designed to replicate human recognition as closely as possible to decode these contextual nuances by learning how users interact with content and matching search queries to more relevant results.

As language evolves and transforms, machines can better predict our meanings behind the words we pronounce and provide us with better information.

6. Image Search to Understand Photos

Approximately 1,087 photos are uploaded to Instagram every second, and 4,000 to Facebook. These are hundreds of millions of photos that are posted daily on those two social networks alone.

Analyzing and cataloging that many submissions would be a painstaking (if not impossible) task for a human, but they are perfect for machine learning.

Machine learning analyzes color and shape patterns and matches them with all existing photo scheme data to help the search engine understand what an image actually is.

This way, Google can not only catalog images for Google image search results, but also run a reverse image search, which allows users to search using an image instead of a text query.

Users can then find other copies of the photo online, as well as similar photos that have the same themes or color palette and information about the subjects in the photo.

In turn, the way a user communicates with these results can shape their SERPs in the future.

7. Ad Quality & Targeting Improvements

Just like its organic search results, Google wants to offer the most relevant ads to its individual users. According to Google’s U.S. patents US20070156887 and US9773256 on ad quality, machine learning can be used to improve an “otherwise weak statistical model.”

This means that the machine learning system can affect ad rank.

“Bid amount, ad quality during the auction (including expected clickthrough rate, ad relevance, and landing page experience), ad rank thresholds, person search context” are entered into the system by keyword by keyword, to determine which thresholds Google takes consider for each keyword.

8. Synonyms Identification

When you see search results that don’t contain a keyword in the snippet, it’s probably because Google uses RankBrain to identify synonyms.

When you search for [forest conservation], you will see different results with the word “protection” because in this case it can be used interchangeably with “conservation”.

In some cases, Google even emphasizes synonyms, which further indicates that it recognizes synonyms.

9. Query Clarification

One of my favorite items is the intent of the user to search queries.

There are many reasons to run a search engine. Users can search for purchases (transactional), research (informative) or find resources (navigation) for any search.

Furthermore, one keyword may be useful for one or any of these purposes.

By analyzing click patterns and the type of content users are dealing with (e.g., CTRs by content type), a search engine can use machine learning to determine the intent behind a user’s search.

An example can be seen with the query “best colleges” in Google search.

The results are reviews and a list of faculties in one SERP, with universities at the top. This shows Google’s understanding of the possible intentions behind the search.

This changes the way SEOs look at the structure and position of links because Google’s algorithm uses tools like BERT to better assess the context where those links are placed.

Summary

Although machine learning is not (and probably never will be) perfect, the more people communicate with it, the more accurate and “smarter” it will be.

This could be alarming to some, creating Skynet visions from the Terminator movies.

However, the real result may be a better experience with technology that solves complex problems and allows people to focus on fostering creativity and innovation.

In 2018, Pew Research conducted a survey in which 63% of respondents said they hoped for the future of humanity in terms of AI – agreeing that by 2030, people will be better off with the help of artificial intelligence.

One of the ways we already see that improving the quality of life is search. As Google and other search engines revolutionize machine learning, we can more easily find the information and services we need when we need them.

More machine learning resources:

The author took all the screenshots, June 2021

Sources :

  • thirdeyedata.io

Primary Sidebar

Recent Posts

  • San Diego SEO Expert provides scientific SEO audits
  • 10 Tips for Hiring a Veteran SEO Expert
  • TriVista Media Announces Best Small Businesses in Southern California to Use in 2023
  • From SEO to GEO: What GPT Marketers Need to Know
  • Local Blitz Explains the Type of San Diego SEO Expert Services…
What makes a website attractive?
What do customers look for in a website?
Why SEO services are important?
What Are the Most Important Keys to a New SEO Campaign?
Why is SEO important?
Seamless integration of SEO for product launches [Podcast]
What does an SEO company actually do?
Who’s to blame?
What to do?
Why is SEO still important?
Link building
How do I get my website to the top of Google search?
What makes a successful SEO campaign?
What are the disadvantages of SEO?

Footer

  • Home
  • SEO
  • SEO Website
  • WordPress SEO
  • Joomla SEO
  • San Diego SEO Expert provides scientific SEO audits
  • 10 Tips for Hiring a Veteran SEO Expert
  • TriVista Media Announces Best Small Businesses in Southern California to Use in 2023
  • From SEO to GEO: What GPT Marketers Need to Know
  • Local Blitz Explains the Type of San Diego SEO Expert Services…

Copyright © 2023